mirror of
https://github.com/SamyRai/turash.git
synced 2025-12-26 23:01:33 +00:00
Repository Structure:
- Move files from cluttered root directory into organized structure
- Create archive/ for archived data and scraper results
- Create bugulma/ for the complete application (frontend + backend)
- Create data/ for sample datasets and reference materials
- Create docs/ for comprehensive documentation structure
- Create scripts/ for utility scripts and API tools
Backend Implementation:
- Implement 3 missing backend endpoints identified in gap analysis:
* GET /api/v1/organizations/{id}/matching/direct - Direct symbiosis matches
* GET /api/v1/users/me/organizations - User organizations
* POST /api/v1/proposals/{id}/status - Update proposal status
- Add complete proposal domain model, repository, and service layers
- Create database migration for proposals table
- Fix CLI server command registration issue
API Documentation:
- Add comprehensive proposals.md API documentation
- Update README.md with Users and Proposals API sections
- Document all request/response formats, error codes, and business rules
Code Quality:
- Follow existing Go backend architecture patterns
- Add proper error handling and validation
- Match frontend expected response schemas
- Maintain clean separation of concerns (handler -> service -> repository)
2.0 KiB
2.0 KiB
15. Monitoring & Observability
Recommendation: Comprehensive observability from day one.
Metrics to Track
Business Metrics (Daily/Monthly Dashboard):
- Active businesses: 500+ (Year 1), 2,000+ (Year 2), 5,000+ (Year 3)
- Sites & resource flows: 85% data completion rate target
- Match rate: 60% conversion from suggested to implemented matches
- Average savings: €25,000 per implemented connection
- Platform adoption: 15-20% free-to-paid conversion rate
Technical Metrics (Real-time Monitoring):
- API response times: p50 <500ms, p95 <2s, p99 <5s
- Graph query performance: <1s for 95% of queries
- Match computation latency: <30s for complex optimizations
- Error rates: <1% API errors, <0.1% critical errors
- Database connection pool: 70-90% utilization target
- Cache hit rates: >85% Redis hit rate, >95% application cache
- Uptime: >99.5% availability target
Domain-Specific Metrics:
- Matching accuracy: >90% user satisfaction with match quality
- Economic calculation precision: ±€100 accuracy on savings estimates
- Geospatial accuracy: <100m error on location-based matching
- Real-time updates: <5s delay for new resource notifications
Alerting
Critical Alerts:
- API error rate > 1%
- Database connection failures
- Match computation failures
- Cache unavailable
Warning Alerts:
- High latency (p95 > 2s)
- Low cache hit rate (< 70%)
- Disk space low
Tools:
- Prometheus: Metrics collection
- Grafana: Visualization and dashboards
- AlertManager: Alert routing and notification
- Loki or ELK: Logging (Elasticsearch, Logstash, Kibana)
- Jaeger or Zipkin: Distributed tracing
- Sentry: Error tracking
Observability Tools
- Metrics: Prometheus + Grafana
- Logging: Loki or ELK stack
- Tracing: Jaeger or Zipkin for distributed tracing
- APM: Sentry for error tracking
- OpenTelemetry:
go.opentelemetry.io/otelfor instrumentation