tercul-backend/jules-task.md
2025-11-30 03:13:33 +01:00

504 lines
17 KiB
Markdown

# Backend Production Readiness & Code Quality Improvements
## Overview
Implement critical production-ready features, refactor architectural issues, and improve code quality for the Tercul backend. The codebase uses Go 1.25, follows DDD/CQRS patterns, GraphQL API, and clean architecture principles.
## Critical Issues to Resolve
### 1. Implement Full-Text Search Service (P0 - Critical)
**Problem**: The search service in `internal/app/search/service.go` is a stub that returns empty results. This is a core feature that users depend on.
**Current State**:
- `Search()` method returns empty results (line 31-39)
- `IndexWork()` is partially implemented but search logic missing
- Weaviate client exists but not utilized for search
- Search filters are defined but not applied
**Affected Files**:
- `internal/app/search/service.go` - Main search service (stub implementation)
- `internal/platform/search/weaviate_wrapper.go` - Weaviate client wrapper
- `internal/domain/search/search.go` - Search domain interfaces
- GraphQL resolvers that use search service
**Solution**:
1. Implement full Weaviate search query in `Search()` method:
- Query Weaviate for works, translations, and authors
- Apply search filters (language, type, date range, tags, authors)
- Support multi-language search (Russian, English, Tatar)
- Implement relevance ranking
- Add pagination support
- Handle special characters and diacritics
2. Enhance indexing:
- Index work titles, content, and metadata
- Index translation content with language tags
- Index author names and biographies
- Add incremental indexing on create/update operations
- Create background job for bulk indexing existing content
3. Add search result transformation:
- Map Weaviate results to domain entities
- Include relevance scores
- Handle empty results gracefully
- Add search analytics/metrics
**Acceptance Criteria**:
- Search returns relevant results ranked by relevance
- Supports filtering by language, category, tags, authors, date ranges
- Search response time < 200ms for 95th percentile
- Handles multi-language queries correctly
- All existing tests pass
- Integration tests with real Weaviate instance
### 2. Refactor Global Configuration Singleton (P1 - High Priority)
**Problem**: The application uses a global singleton `config.Cfg` which violates dependency injection principles and makes testing difficult.
**Current State**:
- `internal/platform/config/config.go` has global `var Cfg *Config`
- `config.Cfg` is accessed directly in multiple places:
- `internal/platform/search/bleve_client.go` (line 13)
- Various other packages
**Affected Files**:
- `internal/platform/config/config.go` - Global config singleton
- `internal/platform/search/bleve_client.go` - Uses `config.Cfg`
- `cmd/api/main.go` - Loads config but also sets global
- `cmd/worker/main.go` - Similar pattern
- Any other files accessing `config.Cfg` directly
**Solution**:
1. Remove global `Cfg` variable from config package
2. Refactor `LoadConfig()` to return config without setting global
3. Pass `*config.Config` as dependency to all constructors:
- Update `NewBleveClient()` to accept config parameter
- Update all repository constructors to accept config
- Update application service constructors
- Update platform service constructors
4. Update main entry points:
- `cmd/api/main.go` - Pass config to all dependencies
- `cmd/worker/main.go` - Pass config to all dependencies
- `cmd/tools/enrich/main.go` - Pass config to dependencies
5. Make configuration more flexible:
- Make migration path configurable (currently hardcoded)
- Make metrics server port configurable
- Add validation for required config values
- Add config struct tags for better documentation
**Acceptance Criteria**:
- No global `config.Cfg` usage anywhere in codebase
- All dependencies receive config via constructor injection
- Tests can easily mock/inject different configs
- Configuration validation on startup
- Backward compatible (same environment variables work)
### 3. Enhance Observability: Distributed Tracing (P0 - Critical)
**Problem**: Tracing is implemented but only exports to stdout. Need production-ready tracing with OTLP exporter and proper instrumentation.
**Current State**:
- `internal/observability/tracing.go` uses `stdouttrace` exporter
- Basic tracer provider exists but not production-ready
- Missing instrumentation in many places
**Affected Files**:
- `internal/observability/tracing.go` - Only stdout exporter
- HTTP middleware - May need tracing instrumentation
- GraphQL resolvers - Need span creation
- Database queries - Need query tracing
- Application services - Need business logic spans
**Solution**:
1. Replace stdout exporter with OTLP exporter:
- Add OTLP exporter configuration
- Support both gRPC and HTTP OTLP endpoints
- Add environment-based configuration (dev vs prod)
- Add trace sampling strategy (100% dev, 10% prod)
2. Enhance instrumentation:
- Add automatic HTTP request tracing in middleware
- Instrument all GraphQL resolvers with spans
- Add database query spans via GORM callbacks
- Create custom spans for slow operations (>100ms)
- Add span attributes (user_id, work_id, etc.)
3. Add trace context propagation:
- Ensure trace IDs propagate through all layers
- Add trace ID to structured logs
- Support distributed tracing across services
4. Configuration:
```go
type TracingConfig struct {
Enabled bool
ServiceName string
OTLPEndpoint string
SamplingRate float64
Environment string
}
```
**Acceptance Criteria**:
- Traces exported to OTLP collector (Jaeger/Tempo compatible)
- All HTTP requests have spans
- All GraphQL resolvers traced
- Database queries have spans
- Trace IDs in logs
- Sampling configurable per environment
### 4. Enhance Observability: Prometheus Metrics (P0 - Critical)
**Problem**: Basic metrics exist but need enhancement for production monitoring and alerting.
**Current State**:
- `internal/observability/metrics.go` has basic HTTP and DB metrics
- Missing business metrics, GraphQL-specific metrics
- No Grafana dashboards or alerting rules
**Affected Files**:
- `internal/observability/metrics.go` - Basic metrics
- GraphQL resolvers - Need resolver metrics
- Application services - Need business metrics
- Background jobs - Need job metrics
**Solution**:
1. Add GraphQL-specific metrics:
- `graphql_resolver_duration_seconds{operation, resolver}`
- `graphql_errors_total{operation, error_type}`
- `graphql_operations_total{operation, status}`
2. Add business metrics:
- `works_created_total{language}`
- `searches_performed_total{type}`
- `user_registrations_total`
- `translations_created_total{language}`
- `likes_total{entity_type}`
3. Enhance existing metrics:
- Add more labels to HTTP metrics (status code as number)
- Add query type labels to DB metrics
- Add connection pool metrics
- Add cache hit/miss metrics
4. Create observability package structure:
- Move metrics to `internal/observability/metrics/`
- Add metric collection helpers
- Document metric naming conventions
**Acceptance Criteria**:
- All critical paths have metrics
- GraphQL operations fully instrumented
- Business metrics tracked
- Metrics exposed on `/metrics` endpoint
- Metric labels follow Prometheus best practices
### 5. Implement Read Models (DTOs) for Efficient Queries (P1 - High Priority)
**Problem**: Application queries return full domain entities, which is inefficient and leaks domain logic to API layer.
**Current State**:
- Queries in `internal/app/*/queries.go` return domain entities
- GraphQL resolvers receive full entities with all fields
- No optimization for list vs detail views
**Affected Files**:
- `internal/app/work/queries.go` - Returns `domain.Work`
- `internal/app/translation/queries.go` - Returns `domain.Translation`
- `internal/app/author/queries.go` - Returns `domain.Author`
- GraphQL resolvers - Receive full entities
**Solution**:
1. Create DTO packages:
- `internal/app/work/dto` - WorkListDTO, WorkDetailDTO
- `internal/app/translation/dto` - TranslationListDTO, TranslationDetailDTO
- `internal/app/author/dto` - AuthorListDTO, AuthorDetailDTO
2. Define optimized DTOs:
```go
// WorkListDTO - For list views (minimal fields)
type WorkListDTO struct {
ID uint
Title string
AuthorName string
AuthorID uint
Language string
CreatedAt time.Time
ViewCount int
LikeCount int
TranslationCount int
}
// WorkDetailDTO - For single work view (all fields)
type WorkDetailDTO struct {
*WorkListDTO
Content string
Description string
Tags []string
Translations []TranslationSummaryDTO
Author AuthorSummaryDTO
}
```
3. Refactor queries to return DTOs:
- Update query methods to use optimized SQL
- Use joins to avoid N+1 queries
- Map domain entities to DTOs
- Update GraphQL resolvers to use DTOs
4. Add benchmarks comparing old vs new approach
**Acceptance Criteria**:
- List queries return optimized DTOs
- Detail queries return full DTOs
- No N+1 query problems
- Payload size reduced by 30-50%
- Query response time improved by 20%
- No breaking changes to GraphQL schema
### 6. Improve Structured Logging (P1 - High Priority)
**Problem**: Logging exists but lacks request context, user IDs, and trace correlation.
**Current State**:
- `internal/platform/log` uses zerolog
- Basic logging but missing context
- No request ID propagation
- No user ID in logs
- No trace/span ID correlation
**Affected Files**:
- `internal/platform/log/logger.go` - Basic logger
- HTTP middleware - Needs request ID injection
- All application services - Need context logging
**Solution**:
1. Enhance HTTP middleware:
- Generate request ID for each request
- Inject request ID into context
- Add user ID from JWT to context
- Add trace/span IDs to context
2. Update logger to use context:
- Extract request ID, user ID, trace ID from context
- Add to all log entries automatically
- Create helper: `log.FromContext(ctx).WithRequestID().WithUserID()`
3. Add structured logging fields:
- Define field name constants
- Ensure consistent field names across codebase
- Add sensitive data redaction
4. Implement log sampling:
- Sample high-volume endpoints (e.g., health checks)
- Configurable sampling rates
- Always log errors regardless of sampling
**Acceptance Criteria**:
- All logs include request ID
- Authenticated request logs include user ID
- All logs include trace/span IDs
- Consistent log format across codebase
- Sensitive data excluded from logs
- Log sampling for high-volume endpoints
### 7. Refactor Caching with Decorator Pattern (P1 - High Priority)
**Problem**: Current caching implementation uses bespoke cached repositories. Should use decorator pattern for better maintainability.
**Current State**:
- `internal/data/cache` has custom caching logic
- Cached repositories are separate implementations
- Not following decorator pattern
**Affected Files**:
- `internal/data/cache/*` - Current caching implementation
- Repository interfaces - Need to support decorators
**Solution**:
1. Implement decorator pattern:
- Create `CachedWorkRepository` decorator
- Create `CachedAuthorRepository` decorator
- Create `CachedTranslationRepository` decorator
- Decorators wrap base repositories
2. Implement cache-aside pattern:
- Check cache on read, populate on miss
- Invalidate cache on write operations
- Add cache key versioning strategy
3. Add cache configuration:
- TTL per entity type
- Cache size limits
- Cache warming strategies
4. Add cache metrics:
- Hit/miss rates
- Cache size
- Eviction counts
**Acceptance Criteria**:
- Decorator pattern implemented
- Cache hit rate > 70% for reads
- Automatic cache invalidation on updates
- Cache failures don't break application
- Metrics for cache performance
### 8. Complete API Documentation (P1 - High Priority)
**Problem**: API documentation is incomplete. Need comprehensive GraphQL API documentation.
**Current State**:
- GraphQL schema exists but lacks descriptions
- No example queries
- No API guide for consumers
**Affected Files**:
- GraphQL schema files - Need descriptions
- `api/README.md` - Needs comprehensive guide
- All resolver implementations - Need documentation
**Solution**:
1. Add descriptions to GraphQL schema:
- Document all types, queries, mutations
- Add field descriptions
- Document input validation rules
- Add deprecation notices where applicable
2. Create comprehensive API documentation:
- `api/README.md` - Complete API guide
- `api/EXAMPLES.md` - Query examples
- Document authentication requirements
- Document rate limiting
- Document error responses
3. Enhance GraphQL Playground:
- Pre-populate with example queries
- Add query templates
- Document schema changes
**Acceptance Criteria**:
- All 80+ GraphQL resolvers documented
- Example queries for each operation
- Input validation rules documented
- Error response examples
- Authentication requirements clear
- API changelog maintained
### 9. Refactor Testing Utilities (P2 - Medium Priority)
**Problem**: Tests depend on live database connections, making them slow and unreliable.
**Current State**:
- `internal/testutil/testutil.go` has database connection logic
- Integration tests require live database
- Tests are slow and may be flaky
**Affected Files**:
- `internal/testutil/testutil.go` - Database connection logic
- All integration tests - Depend on live DB
**Solution**:
1. Decouple tests from live database:
- Remove database connection from testutil
- Use test containers for integration tests
- Use mocks for unit tests
2. Improve test utilities:
- Create test data builders
- Add fixtures for common scenarios
- Improve test isolation
3. Add parallel test execution:
- Enable `-parallel` flag where safe
- Use test-specific database schemas
- Clean up test data properly
**Acceptance Criteria**:
- Unit tests run without database
- Integration tests use test containers
- Tests run in parallel where possible
- Test execution time < 5 seconds for unit tests
- Clear separation between unit and integration tests
### 10. Implement Analytics Features (P2 - Medium Priority)
**Problem**: Analytics service exists but some metrics are stubs (like, comment, bookmark counting).
**Current State**:
- `internal/jobs/linguistics/work_analysis_service.go` has TODO comments:
- Line 184: ViewCount TODO
- Line 185: LikeCount TODO
- Line 186: CommentCount TODO
- Line 187: BookmarkCount TODO
- Line 188: TranslationCount TODO
- Line 192: PopularTranslations TODO
**Affected Files**:
- `internal/jobs/linguistics/work_analysis_service.go` - Stub implementations
- `internal/app/analytics/*` - Analytics services
**Solution**:
1. Implement counting services:
- Like counting service
- Comment counting service
- Bookmark counting service
- Translation counting service
- View counting service
2. Implement popular translations calculation:
- Calculate based on likes, comments, bookmarks
- Cache results for performance
- Update periodically via background job
3. Add analytics to work analysis:
- Integrate counting services
- Update WorkAnalytics struct
- Ensure data is accurate and up-to-date
**Acceptance Criteria**:
- All analytics metrics implemented
- Popular translations calculated correctly
- Analytics updated in real-time or near-real-time
- Performance optimized (cached where appropriate)
- Tests for all analytics features
## Implementation Guidelines
1. **Architecture First**: Maintain clean architecture, DDD, and CQRS patterns
2. **Backward Compatibility**: Ensure API contracts remain consistent
3. **Code Quality**:
- Follow Go best practices and idioms
- Use interfaces for testability
- Maintain separation of concerns
- Add comprehensive error handling
4. **Testing**: Write tests for all new features and refactorings
5. **Documentation**: Add GoDoc comments for all public APIs
6. **Performance**: Optimize for production workloads
7. **Observability**: Instrument all critical paths
## Expected Outcome
- Production-ready search functionality
- Proper dependency injection (no globals)
- Full observability (tracing, metrics, logging)
- Optimized queries with DTOs
- Comprehensive API documentation
- Fast, reliable test suite
- Complete analytics features
- Improved code maintainability
## Files to Prioritize
1. `internal/app/search/service.go` - Core search implementation (P0)
2. `internal/platform/config/config.go` - Configuration refactoring (P1)
3. `internal/observability/*` - Observability enhancements (P0)
4. `internal/app/*/queries.go` - DTO implementation (P1)
5. `internal/platform/log/*` - Logging improvements (P1)
6. `api/README.md` - API documentation (P1)
## Notes
- Codebase uses Go 1.25
- Follows DDD/CQRS/Clean Architecture patterns
- GraphQL API with gqlgen
- PostgreSQL with GORM
- Weaviate for vector search
- Redis for caching and job queue
- Docker for local development
- Existing tests should continue to pass
- Follow existing code style and patterns